Heme oxygenase-1 derived carbon monoxide suppresses Aβ1–42 toxicity in astrocytes
نویسندگان
چکیده
Neurodegeneration in Alzheimer's disease (AD) is extensively studied, and the involvement of astrocytes and other cell types in this process has been described. However, the responses of astrocytes themselves to amyloid β peptides ((Aβ; the widely accepted major toxic factor in AD) is less well understood. Here, we show that Aβ(1-42) is toxic to primary cultures of astrocytes. Toxicity does not involve disruption of astrocyte Ca2+ homeostasis, but instead occurs via formation of the toxic reactive species, peroxynitrite. Thus, Aβ(1-42) raises peroxynitrite levels in astrocytes, and Aβ(1-42) toxicity can be inhibited by antioxidants, or by inhibition of nitric oxide (NO) formation (reactive oxygen species (ROS) and NO combine to form peroxynitrite), or by a scavenger of peroxynitrite. Increased ROS levels observed following Aβ(1-42) application were derived from NADPH oxidase. Induction of haem oxygenase-1 (HO-1) protected astrocytes from Aβ(1-42) toxicity, and this protective effect was mimicked by application of the carbon monoxide (CO) releasing molecule CORM-2, suggesting HO-1 protection was attributable to its formation of CO. CO suppressed the rise of NADPH oxidase-derived ROS caused by Aβ(1-42). Under hypoxic conditions (0.5% O2, 48 h) HO-1 was induced in astrocytes and Aβ(1-42) toxicity was significantly reduced, an effect which was reversed by the specific HO-1 inhibitor, QC-15. Our data suggest that Aβ(1-42) is toxic to astrocytes, but that induction of HO-1 affords protection against this toxicity due to formation of CO. HO-1 induction, or CO donors, would appear to present attractive possible approaches to provide protection of both neuronal and non-neuronal cell types from the degenerative effects of AD in the central nervous system.
منابع مشابه
via Inhibition of IL-2 Production Oxygenase-1 Suppresses T Cell Proliferation Carbon Monoxide Produced by Heme
متن کامل
Mouse-to-Rat Cardiac Transplants Oxygenase-1 Suppresses the Rejection of Carbon Monoxide Generated by Heme
متن کامل
Heme oxygenase-1: role in brain aging and neurodegeneration.
The mechanisms responsible for excessive iron deposition and mitochondrial insufficiency in the aging and degenerating nervous system remain poorly understood. Heme oxygenase-1 (HO-1) is a 32kDa stress protein that degrades heme to biliverdin, free iron and carbon monoxide. Our laboratory has shown that cysteamine, dopamine, beta-amyloid, IL-1beta and TNF-alpha up-regulate HO-1 followed by mito...
متن کاملVanillic acid attenuates Aβ1-42-induced oxidative stress and cognitive impairment in mice
Increasing evidence demonstrates that β-amyloid (Aβ) elicits oxidative stress, which contributes to the pathogenesis and disease progression of Alzheimer's disease (AD). The aims of the present study were to determine and explore the antioxidant nature and potential mechanism of vanillic acid (VA) in Aβ1-42-induced oxidative stress and neuroinflammation mediated cognitive impairment in mice. An...
متن کاملCarbon monoxide as an endogenous vascular modulator.
Carbon monoxide (CO) is produced by heme oxygenase (HO)-catalyzed heme degradation to CO, iron, and biliverdin. HO has two active isoforms, HO-1 (inducible) and HO-2 (constitutive). HO-2, but not HO-1, is highly expressed in endothelial and smooth muscle cells and in adjacent astrocytes in the brain. HO-1 is expressed basally only in the spleen and liver but can be induced to a varying extent i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017